Resolver

gio.Resolver provides cancellable synchronous and asynchronous DNS resolution, for hostnames (Resolver.lookupByAddress, Resolver.lookupByName and their async variants) and SRV (service) records (Resolver.lookupService).

gio.NetworkAddress and gio.NetworkService provide wrappers around gio.Resolver functionality that also implement GSocketConnectable, making it easy to connect to a remote host/service.

class Resolver : ObjectG {}

Constructors

this
this(GResolver* gResolver, bool ownedRef)

Sets our main struct and passes it to the parent class.

Members

Functions

addOnReload
gulong addOnReload(void delegate(Resolver) dlg, ConnectFlags connectFlags)

Emitted when the resolver notices that the system resolver configuration has changed.

getResolverStruct
GResolver* getResolverStruct(bool transferOwnership)

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

lookupByAddress
string lookupByAddress(InetAddress address, Cancellable cancellable)

Synchronously reverse-resolves address to determine its associated hostname.

lookupByAddressAsync
void lookupByAddressAsync(InetAddress address, Cancellable cancellable, GAsyncReadyCallback callback, void* userData)

Begins asynchronously reverse-resolving address to determine its associated hostname, and eventually calls callback, which must call Resolver.lookupByAddressFinish to get the final result.

lookupByAddressFinish
string lookupByAddressFinish(AsyncResultIF result)

Retrieves the result of a previous call to Resolver.lookupByAddressAsync.

lookupByName
ListG lookupByName(string hostname, Cancellable cancellable)

Synchronously resolves hostname to determine its associated IP address(es). hostname may be an ASCII-only or UTF-8 hostname, or the textual form of an IP address (in which case this just becomes a wrapper around InetAddress.newFromString).

lookupByNameAsync
void lookupByNameAsync(string hostname, Cancellable cancellable, GAsyncReadyCallback callback, void* userData)

Begins asynchronously resolving hostname to determine its associated IP address(es), and eventually calls callback, which must call Resolver.lookupByNameFinish to get the result. See Resolver.lookupByName for more details.

lookupByNameFinish
ListG lookupByNameFinish(AsyncResultIF result)

Retrieves the result of a call to Resolver.lookupByNameAsync.

lookupByNameWithFlags
ListG lookupByNameWithFlags(string hostname, GResolverNameLookupFlags flags, Cancellable cancellable)

This differs from Resolver.lookupByName in that you can modify the lookup behavior with flags. For example this can be used to limit results with G_RESOLVER_NAME_LOOKUP_FLAGS_IPV4_ONLY

lookupByNameWithFlagsAsync
void lookupByNameWithFlagsAsync(string hostname, GResolverNameLookupFlags flags, Cancellable cancellable, GAsyncReadyCallback callback, void* userData)

Begins asynchronously resolving hostname to determine its associated IP address(es), and eventually calls callback, which must call Resolver.lookupByNameWithFlagsFinish to get the result. See Resolver.lookupByName for more details.

lookupByNameWithFlagsFinish
ListG lookupByNameWithFlagsFinish(AsyncResultIF result)

Retrieves the result of a call to Resolver.lookupByNameWithFlagsAsync.

lookupRecords
ListG lookupRecords(string rrname, GResolverRecordType recordType, Cancellable cancellable)

Synchronously performs a DNS record lookup for the given rrname and returns a list of records as glib.Variant tuples. See GResolverRecordType for information on what the records contain for each record_type.

lookupRecordsAsync
void lookupRecordsAsync(string rrname, GResolverRecordType recordType, Cancellable cancellable, GAsyncReadyCallback callback, void* userData)

Begins asynchronously performing a DNS lookup for the given rrname, and eventually calls callback, which must call Resolver.lookupRecordsFinish to get the final result. See Resolver.lookupRecords for more details.

lookupRecordsFinish
ListG lookupRecordsFinish(AsyncResultIF result)

Retrieves the result of a previous call to Resolver.lookupRecordsAsync. Returns a non-empty list of records as glib.Variant tuples. See GResolverRecordType for information on what the records contain.

lookupService
ListG lookupService(string service, string protocol, string domain, Cancellable cancellable)

Synchronously performs a DNS SRV lookup for the given service and protocol in the given domain and returns an array of gio.SrvTarget domain may be an ASCII-only or UTF-8 hostname. Note also that the service and protocol arguments do not include the leading underscore that appears in the actual DNS entry.

lookupServiceAsync
void lookupServiceAsync(string service, string protocol, string domain, Cancellable cancellable, GAsyncReadyCallback callback, void* userData)

Begins asynchronously performing a DNS SRV lookup for the given service and protocol in the given domain, and eventually calls callback, which must call Resolver.lookupServiceFinish to get the final result. See Resolver.lookupService for more details.

lookupServiceFinish
ListG lookupServiceFinish(AsyncResultIF result)

Retrieves the result of a previous call to Resolver.lookupServiceAsync.

setDefault
void setDefault()

Sets resolver to be the application's default resolver (reffing resolver, and unreffing the previous default resolver, if any). Future calls to Resolver.getDefault will return this resolver.

Static functions

freeAddresses
void freeAddresses(ListG addresses)

Frees addresses (which should be the return value from Resolver.lookupByName or Resolver.lookupByNameFinish). (This is a convenience method; you can also simply free the results by hand.)

freeTargets
void freeTargets(ListG targets)

Frees targets (which should be the return value from Resolver.lookupService or Resolver.lookupServiceFinish). (This is a convenience method; you can also simply free the results by hand.)

getDefault
Resolver getDefault()

Gets the default gio.Resolver You should unref it when you are done with it. gio.Resolver may use its reference count as a hint about how many threads it should allocate for concurrent DNS resolutions.

getType
GType getType()

Variables

gResolver
GResolver* gResolver;

the main Gtk struct

Inherited Members

From ObjectG

gObject
GObject* gObject;

the main Gtk struct

getObjectGStruct
GObject* getObjectGStruct(bool transferOwnership)

Get the main Gtk struct

getStruct
void* getStruct()

the main Gtk struct as a void*

opCast
T opCast()
getDObject
RT getDObject(U obj, bool ownedRef)

Gets a D Object from the objects table of associations.

setProperty
void setProperty(string propertyName, T value)
addOnNotify
gulong addOnNotify(void delegate(ParamSpec, ObjectG) dlg, string property, ConnectFlags connectFlags)

The notify signal is emitted on an object when one of its properties has been changed. Note that getting this signal doesn't guarantee that the value of the property has actually changed, it may also be emitted when the setter for the property is called to reinstate the previous value.

getType
GType getType()
compatControl
size_t compatControl(size_t what, void* data)
interfaceFindProperty
ParamSpec interfaceFindProperty(TypeInterface gIface, string propertyName)

Find the gobject.ParamSpec with the given name for an interface. Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

interfaceInstallProperty
void interfaceInstallProperty(TypeInterface gIface, ParamSpec pspec)

Add a property to an interface; this is only useful for interfaces that are added to GObject-derived types. Adding a property to an interface forces all objects classes with that interface to have a compatible property. The compatible property could be a newly created gobject.ParamSpec, but normally ObjectClass.overrideProperty will be used so that the object class only needs to provide an implementation and inherits the property description, default value, bounds, and so forth from the interface property.

interfaceListProperties
ParamSpec[] interfaceListProperties(TypeInterface gIface)

Lists the properties of an interface.Generally, the interface vtable passed in as g_iface will be the default vtable from g_type_default_interface_ref(), or, if you know the interface has already been loaded, g_type_default_interface_peek().

addToggleRef
void addToggleRef(GToggleNotify notify, void* data)

Increases the reference count of the object by one and sets a callback to be called when all other references to the object are dropped, or when this is already the last reference to the object and another reference is established.

addWeakPointer
void addWeakPointer(void* weakPointerLocation)

Adds a weak reference from weak_pointer to object to indicate that the pointer located at weak_pointer_location is only valid during the lifetime of object. When the object is finalized, weak_pointer will be set to NULL.

bindProperty
Binding bindProperty(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags)

Creates a binding between source_property on source and target_property on target. Whenever the source_property is changed the target_property is updated using the same value. For instance:

bindPropertyFull
Binding bindPropertyFull(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, GBindingTransformFunc transformTo, GBindingTransformFunc transformFrom, void* userData, GDestroyNotify notify)

Complete version of g_object_bind_property().

bindPropertyWithClosures
Binding bindPropertyWithClosures(string sourceProperty, ObjectG target, string targetProperty, GBindingFlags flags, Closure transformTo, Closure transformFrom)

Creates a binding between source_property on source and target_property on target, allowing you to set the transformation functions to be used by the binding.

dupData
void* dupData(string key, GDuplicateFunc dupFunc, void* userData)

This is a variant of g_object_get_data() which returns a 'duplicate' of the value. dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.

dupQdata
void* dupQdata(GQuark quark, GDuplicateFunc dupFunc, void* userData)

This is a variant of g_object_get_qdata() which returns a 'duplicate' of the value. dup_func defines the meaning of 'duplicate' in this context, it could e.g. take a reference on a ref-counted object.

forceFloating
void forceFloating()

This function is intended for GObject implementations to re-enforce a floating[floating-ref] object reference. Doing this is seldom required: all GInitiallyUnowneds are created with a floating reference which usually just needs to be sunken by calling g_object_ref_sink().

freezeNotify
void freezeNotify()

Increases the freeze count on object. If the freeze count is non-zero, the emission of "notify" signals on object is stopped. The signals are queued until the freeze count is decreased to zero. Duplicate notifications are squashed so that at most one notify signal is emitted for each property modified while the object is frozen.

getData
void* getData(string key)

Gets a named field from the objects table of associations (see g_object_set_data()).

getProperty
void getProperty(string propertyName, Value value)

Gets a property of an object.

getQdata
void* getQdata(GQuark quark)

This function gets back user data pointers stored via g_object_set_qdata().

getValist
void getValist(string firstPropertyName, void* varArgs)

Gets properties of an object.

getv
void getv(string[] names, Value[] values)

Gets n_properties properties for an object. Obtained properties will be set to values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

isFloating
bool isFloating()

Checks whether object has a floating[floating-ref] reference.

notify
void notify(string propertyName)

Emits a "notify" signal for the property property_name on object.

notifyByPspec
void notifyByPspec(ParamSpec pspec)

Emits a "notify" signal for the property specified by pspec on object.

ref_
ObjectG ref_()

Increases the reference count of object.

refSink
ObjectG refSink()

Increase the reference count of object, and possibly remove the floating[floating-ref] reference, if object has a floating reference.

removeToggleRef
void removeToggleRef(GToggleNotify notify, void* data)

Removes a reference added with g_object_add_toggle_ref(). The reference count of the object is decreased by one.

removeWeakPointer
void removeWeakPointer(void* weakPointerLocation)

Removes a weak reference from object that was previously added using g_object_add_weak_pointer(). The weak_pointer_location has to match the one used with g_object_add_weak_pointer().

replaceData
bool replaceData(string key, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify oldDestroy)

Compares the user data for the key key on object with oldval, and if they are the same, replaces oldval with newval.

replaceQdata
bool replaceQdata(GQuark quark, void* oldval, void* newval, GDestroyNotify destroy, GDestroyNotify oldDestroy)

Compares the user data for the key quark on object with oldval, and if they are the same, replaces oldval with newval.

runDispose
void runDispose()

Releases all references to other objects. This can be used to break reference cycles.

setData
void setData(string key, void* data)

Each object carries around a table of associations from strings to pointers. This function lets you set an association.

setDataFull
void setDataFull(string key, void* data, GDestroyNotify destroy)

Like g_object_set_data() except it adds notification for when the association is destroyed, either by setting it to a different value or when the object is destroyed.

setProperty
void setProperty(string propertyName, Value value)

Sets a property on an object.

setQdata
void setQdata(GQuark quark, void* data)

This sets an opaque, named pointer on an object. The name is specified through a GQuark (retrived e.g. via g_quark_from_static_string()), and the pointer can be gotten back from the object with g_object_get_qdata() until the object is finalized. Setting a previously set user data pointer, overrides (frees) the old pointer set, using NULL as pointer essentially removes the data stored.

setQdataFull
void setQdataFull(GQuark quark, void* data, GDestroyNotify destroy)

This function works like g_object_set_qdata(), but in addition, a void (*destroy) (gpointer) function may be specified which is called with data as argument when the object is finalized, or the data is being overwritten by a call to g_object_set_qdata() with the same quark.

setValist
void setValist(string firstPropertyName, void* varArgs)

Sets properties on an object.

setv
void setv(string[] names, Value[] values)

Sets n_properties properties for an object. Properties to be set will be taken from values. All properties must be valid. Warnings will be emitted and undefined behaviour may result if invalid properties are passed in.

stealData
void* stealData(string key)

Remove a specified datum from the object's data associations, without invoking the association's destroy handler.

stealQdata
void* stealQdata(GQuark quark)

This function gets back user data pointers stored via g_object_set_qdata() and removes the data from object without invoking its destroy() function (if any was set). Usually, calling this function is only required to update user data pointers with a destroy notifier, for example:

thawNotify
void thawNotify()

Reverts the effect of a previous call to g_object_freeze_notify(). The freeze count is decreased on object and when it reaches zero, queued "notify" signals are emitted.

unref
void unref()

Decreases the reference count of object. When its reference count drops to 0, the object is finalized (i.e. its memory is freed).

watchClosure
void watchClosure(Closure closure)

This function essentially limits the life time of the closure to the life time of the object. That is, when the object is finalized, the closure is invalidated by calling Closure.invalidate on it, in order to prevent invocations of the closure with a finalized (nonexisting) object. Also, g_object_ref() and g_object_unref() are added as marshal guards to the closure, to ensure that an extra reference count is held on object during invocation of the closure. Usually, this function will be called on closures that use this object as closure data.

weakRef
void weakRef(GWeakNotify notify, void* data)

Adds a weak reference callback to an object. Weak references are used for notification when an object is finalized. They are called "weak references" because they allow you to safely hold a pointer to an object without calling g_object_ref() (g_object_ref() adds a strong reference, that is, forces the object to stay alive).

weakUnref
void weakUnref(GWeakNotify notify, void* data)

Removes a weak reference callback to an object.

clearObject
void clearObject(ObjectG objectPtr)

Clears a reference to a GObject